- Galoissche Körpererweiterung
- нормальное расширение поля, расширение Галуа
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
galoissche Körpererweiterung — [ga lwa ; nach É. Galois], Algebra: Bezeichnung für eine endliche, separable und normale Körpererweiterung (Körper); gelegentlich auch für normale Körpererweiterung … Universal-Lexikon
Krulltopologie — Die Krulltopologie, nach Wolfgang Krull, ist eine Topologie auf der Galoisgruppe einer nicht notwendigerweise endlichen Körpererweiterung L / K, so dass diese zu einer so genannten topologischen Gruppe wird. Inhaltsverzeichnis 1 Definition für… … Deutsch Wikipedia
Zyklische Erweiterung — Im mathematischen Teilgebiet der Algebra ist eine abelsche Erweiterung eine galoissche Körpererweiterung mit abelscher Galoisgruppe. Im Spezialfall einer zyklischen Galoisgruppe liegt eine zyklische Erweiterung vor. Die Klassenkörpertheorie… … Deutsch Wikipedia
Abelsche Erweiterung — Im mathematischen Teilgebiet der Algebra ist eine abelsche Erweiterung eine galoissche Körpererweiterung mit abelscher Galoisgruppe. Im Spezialfall einer zyklischen Galoisgruppe liegt eine zyklische Erweiterung vor. Die Klassenkörpertheorie… … Deutsch Wikipedia
Hilberts Satz 90 — Der mathematische Satz, den David Hilbert unter der Nummer 90 in seiner Theorie der algebraischen Zahlkörper aufführt und der seither diesen Namen trägt, macht eine Aussage über die Struktur bestimmter Körpererweiterungen. Inhaltsverzeichnis 1… … Deutsch Wikipedia
Inverser Limes — In der Algebra oder allgemeiner der Kategorientheorie ist der projektive Limes (oder inverse Limes oder einfach Limes) eine Konstruktion, mit der man verschiedene in gewisser Weise zusammengehörende Strukturen verbinden kann. Das Ergebnis dieses… … Deutsch Wikipedia
Limes (Kategorientheorie) — In der Algebra oder allgemeiner der Kategorientheorie ist der projektive Limes (oder inverse Limes oder einfach Limes) eine Konstruktion, mit der man verschiedene in gewisser Weise zusammengehörende Strukturen verbinden kann. Das Ergebnis dieses… … Deutsch Wikipedia
Projektiver Limes — In der Algebra oder allgemeiner der Kategorientheorie ist der projektive Limes (oder inverse Limes oder einfach Limes) eine Konstruktion, mit der man verschiedene in gewisser Weise zusammengehörende Strukturen verbinden kann. Das Ergebnis dieses… … Deutsch Wikipedia
Relativklassenzahl — Die Relativklassenzahl ist ein mathematischer Begriff aus dem Bereich der algebraischen Zahlentheorie. Sei K ein abelscher Zahlkörper, d. h. K / Q eine endliche, galoissche Körpererweiterung mit abelscher Galoisgruppe. (Nach dem Satz von… … Deutsch Wikipedia
Galois-Gruppe — [ga lwa ; nach É. Galois], Algebra: die Gruppe der Automorphismen eines durch galoissche Körpererweiterung aus dem Körper K hervorgegangenen Körpers L, die den Körper K elementweise fest lassen; ihre Ordnung ist gleich dem Grad von L. Ist … Universal-Lexikon
Galois-Theorie — Galoistheorie ist der Bereich der Algebra, der klassisch die Symmetrien der Nullstellen von Polynomen, das sind die Lösungen (bzw. Wurzeln) der zugehörigen Polynomgleichung, zum Gegenstand hat. Diese Symmetrien werden normalerweise durch Gruppen… … Deutsch Wikipedia